Divisibility

Overview: Do you know that 8 can be divided by 2 completely? The answer may be yes because it is a small number; therefore division can be carried out easily. However, can you figure out if $9,054,137,828$ can be divided by 7 completely without a remainder?

Conducting long division for large numbers can be tedious (and boring). This lesson gives us an opportunity to answer such questions within seconds.

Divisibility is a concept which implies that a number should be divided by another completely. Since 8 can be divided completely by 2 , we say it is divisible by 2 . In this lesson, we will discuss quick tests that can make us say whether a number is divisible by $2,3,4,5$ and 7 .

Materials

- Pencil
- Paper

Activity

Divisibility test for 2

Let's start with an easy divisibility test: testing for the divisibility of 2 . A number is divisible by two if the last digit is divisible by 2 . Numbers that are divisible by two are $0,2,4,6$, and 8 . If the last digit of your number is one of these, then the entire number is divisible by 2 . Examples are $36,92,50,18$, and 46.

Circle the numbers that are divisible by 2: $24 \times 19067 \begin{array}{lllllllllll} & 76 & 6 & 49 & 26 & 32 & 313 & 358 & 927 & 1024 & 512\end{array}$

Divisibility test for 3

This is an interesting test, because it seems mysterious how it works. To find out if a number is divisible by 3 , we first add the digits of the number together and of the sum is divisible by 3 , then the original number itself is also divisible by 3.

Let's try an example: 144
First, we'll figure out the sum of the digits: $1+4+4=9$.
Does 3 go into 9 ? You don't have to figure out how many times it does - it's just a yes or no thing.
Since the answer is yes, then 144 is divisible by 3!

Try this one before turning the page: Is 273,645 divisible by 3 ?

First, you need to sum the digits: $2+7+3+6+4+5=27$
Does 3 go into 27? Yes!
So you've just figured out that 273,645 is divisible by 3 .

Divisibility test for 4

A number is divisible by 4 if the last two digits are divisible by 4 (or if they are two zeros). For example, 2,016 is divisible by 4 since 16 is divisible by 4 .

Is 244 divisible by 4 ?
The last two digits (244) form the number 44. When we look at the 44, we immediately know that 4 goes into 44, so that means that 244 is divisible by 4 .

Is 18,336 divisible by 4 ?
Check out the last two digits. They form the number 36, and since 36 is divisible by 4 (again, it doesn't matter right now how many times 4 goes into 36), the number 18,336 is divisible by 4 .

What about a million? Is $1,000,000$ divisible by 4 ?
Yes, because the last two digits are " 00 " so automatically the number is divisible by 4 .

Divisibility test for 5

This is probably the easiest of all divisibility tests. Simply look at the last digit on the number. If you find a 0 or 5 in the ones place, then the number is divisible by 5 . Can you easily see that these numbers: $2 \underline{5}, 24,51 \underline{0}, 6,53 \underline{5}$ and $2,382,639,403,482,510$ are divisible by 5 ?

What about these? $522,33 \underline{4}, 524,25 \underline{1}$ and $63,734,63 \underline{8}$? (These are not divisible by 5.)

Divisibility test for 6

This one looks difficult, but it's really a combination of two previous tests we've just learned.
Remember that $6=3 \times 2$, which means that to get to 6 , we must first multiply 3 and 2 together.
What this really means is that a number is divisible by 6 if it is divisible by both 2 and 3.
For example, is the number 1,134 divisible by 6 ? Let's find out.
First, we can test for the divisibility of 2 . Since the last digit is a 4 , this number is divisible by 2 . So far, so good. But to be divisible by 6 , it's also got to pass one more test.

Now let's test for divisibility by 3 . We'll sum the digits $1+1+3+4=9$. Since 9 is divisible by 3, this number passed the second test.

The result? 1134 can be divided by 3 and 2 , so it's also divisible by 6 .

Divisibility test for 7

There are a couple of ways to check for divisibility by 7. This one happens to be one of my favorites, and it makes use of a strange 3-2-1 pattern. Let's do an example so you see how it works:

Our job is to figure out if the number 6,124314 is divisible by 7 .
Since the number has 7 digits, we write a pattern of 3,2 and 1 beginning with 3 as shown in the left column of numbers. Next assign each number with a + or - sign, beginning with positive downward but shifting from positive to negative or negative to positive each time you hit a 1.

Now write the multiply symbol (x) after the 3-2-1 pattern of numbers, and then write your original number backwards so that the ones place gets multiplied by the +3 , the tens place digit gets multiplied by the +2 , and so forth. See if you can figure out what I've done here:

+3	$+3 \times 4$	$+3 \times 4=12$
+2	$+2 \times 1$	$+2 \times 1=2$
-1	-1×3	$-1 \times 3=-3$
-3	-3×4	$-3 \times 4=-12$
-2	-2×2	$-2 \times 2=-4$
+1	$+1 \times 1$	$+1 \times 1=-1$
+3	$+3 \times 6$	$+3 \times 6=18$

Now add up all the numbers together in the last column to get $14(12+2+(-3)+(-12)+(-4)+(-1)+18=14)$.
Since the number 14 is divisible by 7 , then the number $6,124,314$ is divisible by 7 .

This is a tricky divisibility test, so let's try another example: Is 18,102 divisible by 7 ? Try it in the space below before turning the page for the steps.

The number 18, 102 has 5 digits, which means we will have a 3-2-1 pattern made up of 5 digits.
$+3 \times 2=6$
$+2 \times 0=0$
$-1 \times 1=-1$
$-3 \times 8=-24$
$-2 \times 1=-2$
Sum up the numbers on the right side gives -21 . Disregard the + or - sign and notice that 21 is divisible by 7 . So the number 18,102 is divisible by 7 !

What about other numbers? You can tell if a number is divisible by 9 if it's divisible by the numbers that make up 9 ($9=3 \times 3$). So 270 is divisible by 9 since it's also divisible by 3 . The number 100 is divisible by $10(10=2 \times 5)$ since it's also divisible by 2 and 5 .

Now it's your turn! Work out the exercises below. (You'll find answers at the back of this book.)

Exercises

1. Identify the number(s) that are divisible by 2 in the following list. 301, 3645, 3673
2. Identify the numbers that are divisible by 3 in the following list. 3981, 430, 4598, 72624
3. Which one of the following numbers is divisible by 7 5894, 56723, 17259
4. Is 2353740 divisible by 4 ?
5. Which one of the following numbers is divisible by both 2 and 5 ? 10002, 453970, 637385
6. A number is divisible of 2 and 3 , will it be divisible by 5 ?
7. If a number is divisible by 2 only, will it be divisible by 4 ?
8. Which of the following numbers is divisible by 3 ? 45769, 25784, 2391
9. List any three 3-digit numbers that are divisible by 5 .
10. List two 4 -digit numbers that are divisible by 4 .

Answers to Exercises: Divisibility

1. None
2. 3981,72624
3. 5894
4. Yes
5. 453970
6. It may or it may not
7. no
8. 2391
9. The numbers must be composed of 3 digits and their last digit must be 0 or 5
10. The numbers must be composed of 4 digits and their last two digit must be 00 or must form a number that is divisible by 4
